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OUTLINE OF THIS PRESENTATION

• Localization of Smart Rock
– Localization Algorithm
– Experimental Validation at Bridge Site

• Smart Rock Design and Prototyping
– Motion under Various Flow Conditions
– Design Guidelines
– Final Design
– Prototyping with Concrete Encasement

• Future Tasks
– Deployment Plan
– Field Measurement Plan

2



LOCALIZATION OF SMART ROCK

• Localization Algorithm
– The total magnetic field (intensity) of a smart rock with 

embedded magnet and its surrounding ferromagnetic 
substances is measured with a magnetometer 
at various points around the smart rock.

– The ambient magnetic field of the ferromagnetic 
substances is measured with the magnetometer and an 
orientation device at the same points.

– The coordinates of the measurement points are 
surveyed using a survey equipment ( Total Station).  

– The intensity and coordinate measurements at six or 
more points enable the localization of the smart rock.
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LOCALIZATION OF SMART ROCK

• Localization Algorithm (Cont.)
– Ambient Field in Global XYZ Coordinate System

 Surrounding ferromagnetic substances
 BA= ambient magnetic field vector 

at  a measurement point Q (X,Y,Z)
 Three components of BA: 

 θ(0, π) and φ(0, 2π) are measured 
from a custom-made 
orientation device 
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LOCALIZATION OF SMART ROCK

• Localization Algorithm (Cont.)
– Magnetic Field of a Permanent Magnet in XYZ System

 Cylindrical magnet P(XM, YM, ZM)
 Orientation defined in local 

xyz coordinate system
 Three components of BM at  Point Q: 
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LOCALIZATION OF SMART ROCK

• Localization Algorithm (Cont.)
– Total Magnetic Field at Point Q in XYZ System

 Total magnetic field intensity:

 B = B(BA, θ, φ, k, , X, Y, Z, 
XM, YM, ZM, α, β, γ) at  any 
measurement  point Q (X,Y,Z)

 Given k, θ , φ, BA, X, Y, Z,
B = B (XM, YM, ZM, α, β, γ)

 Minimum measurements 
at six points
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LOCALIZATION OF SMART ROCK

• Localization Algorithm (Cont.)
– Unknown Orientation

 SRSS error between predicted intensity  and the measured intensity
at n measurement points      

– Known Orientation (α=0, β=0, and γ=0)
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LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site
– Gasconade River Bridge Site, MO
– Two Smart Rocks

 Unknown orientation: Arbitrarily Oriented System (AOS)
 Known orientation: Automatically Pointing South System (APSS) 

(a) AOS (b) APSS
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LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site (Cont.)
– Evaluation of k, BA, θ and φ

K(AOS) = 41890.13(nT·m3), measured with high precision level
K(APSS) = 42542.27(nT·m3), measured with low precision level
Ambient magnetic field lines are no longer in parallel due to 

ferromagnetic substances (e.g. reinforcement in bridge pier 
and deck)

 Three parameters (BA, θ and φ) define the ambient magnetic 
field for each measurement point in space

– The field intensity BA was measured with a magnetometer.
– An Ambient Magnetic Field Orientation Device (AMFOD) 

was developed and prototyped to measure the angles θ and φ.
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LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site (Cont.)
– Test Setup around a Scour Hole

 Three magnet locations M1, M2, and M3
for AOS and APSS

 Total 34 measurement points
 Total Station at Point B to 

survey coordinates of three 
smart rocks and 34 sensor 
positions or measurement  
points

 AMFOD was set at the 
34 points to measure
θ and φ
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LOCALIZATION OF SMART ROCK
• Experimental Validation of at Bridge Site (Cont.)

– Test Setup
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LOCALIZATION OF SMART ROCK

• Experimental Validation of at Bridge Site (Cont.)
– Test Procedure

 Step 1: Set the Global XYZ Coordinate System
 Step 2: Select the Locations of Smart Rocks and  the Sensor Head

• Smart rocks located far away from, near, and close to the bridge pier
• 34 points distributed around M1, M2 and M3 bounded by circles with 

diameter of 1.5 m and 5 m around the pier
 Step 3: Select a Calibration Point C for AMFOD

• Together with a fixed object as a reference to assist 
in determination of angle φ 

• Set away from the 34 measurement points to ensure the line of sight from 
laser light to Point C
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LOCALIZATION OF SMART ROCK

• Experimental Validation of at Bridge Site (Cont.)
– Test Procedure (Cont.)

 Step 4: Determine the Coordinates of Smart Rocks, Sensor Head and 
Calibration Point
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Total Station and Prism for Positioning



LOCALIZATION OF SMART ROCK

• Experimental Validation of at Bridge Site (Cont.)
– Test Procedure (Cont.)

 Step 5: Measure θ and φ
• AMFOD placed at measurement point
• The center of high precision APSS 

kept along extension line of the orange
plastic pole. 

• Shooting light of Horizontal Laser 2 hits
on the wooden pole at Point C 

• Inside magnet automatically aligned to
the ambient magnetic field

• Shooting light of Laser 1 goes through
the hole at the center line of APSS and
hits on the center of laser acceptor

• Read θ and φ 
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LOCALIZATION OF SMART ROCK

• Experimental Validation of at Bridge Site (Cont.)
– Test Procedure (Cont.)

 Step 6: Measure the Ambient Magnetic Field Intensity
• Level bubble attached on the sensor head ensures

the sensor perpendicular to the ground
• Keep the center of the sensor head consistent with 

that of the high precision APSS by a 
57.7 cm wooden pole

• Conduct measurement without vehicles 
• At least three measurements to ensure

accuracy and repeatability
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LOCALIZATION OF SMART ROCK

• Experimental Validation of at Bridge Site (Cont.)
– Test Procedure (Cont.)

 Step7 & 8: Measure the Total Magnetic Field Intensity of AOS and APSS at 
M1, M2 and M3
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LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site (Cont.)
– Test Results
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Measurement 
Point

Sensor Coordinates
Ambient Magnetic Field

Direction Intensity

X/m Y/m Z/m θ / rad φ / rad BA /nT BAX /nT BAY /nT BAZ /nT

C 15.284 -2.264 N/A N/A N/A N/A N/A N/A N/A
P1 10.882 2.202 -0.547 1.213 1.503 50798 1213 17748 47581 
P2 11.425 1.481 -0.454 1.222 1.525 51417 810 17567 48316 
P3 12.365 1.479 -0.576 1.222 1.477 51363 1637 17491 48266 
P4 12.040 0.587 -0.483 1.197 1.485 51366 1603 18674 47825 
P5 12.701 -0.160 -0.512 1.196 1.512 51296 1102 18768 47727 

… … … … … … … … … …

P33 8.813 1.487 -0.724 1.143 1.511 51330 1262 21249 46709 
P34 9.455 2.322 -0.436 1.162 1.410 51417 3264 20158 47188 

Table 1 Sensor Coordinates and Ambient Magnetic Field Intensities



LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site (Cont.)
– Test Results (M1APSS)
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Location of Sensor Head X(m) Y(m) Z(m) Bi
(M) (nT)

P1 10.882 2.202 -0.517 58120
P2 11.425 1.481 -0.424 56946
… … … … …
P9 10.940 -2.065 -0.687 52055
P10 12.119 -1.657 -0.665 50942
P20 9.822 -2.717 -0.665 53002
P28 7.989 -1.553 -0.659 51464
P29 9.216 -1.476 -0.661 51031
P30 8.651 -0.664 -0.757 48911
… … … … …

P34 9.455 2.322 -0.406 56421
Predicted APSS Location M1APSS 10.249 0.454 -1.352 

N/AMeasured APSS Location M1APSS 10.326 0.305 -1.407
Location Prediction Error for MAPSS -0.077 0.149 0.055

SRSS Error in Coordinate 0.176 m



LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site (Cont.)
– Test Results (M3APSS)
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Location of Sensor Head X(m) Y(m) Z(m) Bi
(M) (nT)

P9 10.940 -2.065 -0.657 52766
P11 11.991 -3.082 -0.558 52422
P12 10.670 -3.162 -0.670 55203
… … … … …

P20 9.822 -2.717 -0.635 55164
P21 9.413 -3.877 -0.748 63734
P23 8.313 -4.215 -0.501 59204
P25 7.750 -4.591 -0.858 58350
P26 7.315 -4.055 -0.726 56087
P27 8.043 -3.046 -0.553 55198

Predicted APSS Location M3APSS 9.527 -5.520 -1.850

N/AMeasured APSS Location M3APSS 9.576 -5.584 -1.822

Location Prediction Error for M3APSS -0.049 0.064 -0.028

SRSS Error in Coordinate 0.085m



LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site (Cont.)
– Test Results (M1AOS)
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Location of Sensor Head X(m) Y(m) Z(m) Bi
(M) (nT)

P1 10.882 2.202 -0.517 53558
P2 11.425 1.481 -0.424 52767
… … … … …
P9 10.940 -2.065 -0.687 49665
P10 12.119 -1.657 -0.665 49567
P20 9.822 -2.717 -0.665 51538
P28 7.989 -1.553 -0.659 50607
P29 9.216 -1.476 -0.661 48149
P30 8.651 -0.664 -0.757 47696
… … … … …

P34 9.455 2.322 -0.406 54539

Predicted AOS Location M1AOS 10.265 0.235 -1.456
N/AMeasured AOS Location M1AOS 10.326 0.305 -1.422

Location Prediction Error for M1AOS -0.061 -0.070 -0.034
SRSS Error in Coordinate 0.099 m



LOCALIZATION OF SMART ROCK

• Experimental Validation at Bridge Site (Cont.)
– Test Results (M3AOS)
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Location of Sensor Head X(m) Y(m) Z(m) Bi
(M) (nT)

P9 10.940 -2.065 -0.667 52651 
P12 10.670 -3.162 -0.680 54660 
P13 12.031 -4.399 -0.745 52095 
… … … … …

P20 9.822 -2.717 -0.645 54929 
P21 9.413 -3.877 -0.758 62508 
P23 8.313 -4.215 -0.511 59364 
P25 7.750 -4.591 -0.868 59523 
P26 7.315 -4.055 -0.736 56642 
P27 8.043 -3.046 -0.563 55399 

Predicted AOS Location M3AOS 9.514 -5.519 -1.860 
N/AMeasured AOS Location M3AOS 9.576 -5.584 -1.837 

Location Prediction Error for M3AOS -0.062 0.065 -0.023

SRSS Error in Coordinate 0.093m



SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions
– Criteria of Incipient Motion of Rocks

 Critical velocity (HEC 18, 3rd version)

 Critical shear stress(HEC18, 3rd version)

 Riprap size design(HEC 23)
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions (Cont.)
– Incipient Motion at Various Bridge Sites

 Highway 1 over Waddell Creek (Br. No. 36-0065)

23
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
• Located about 17miles north of the city of Santa Cruz
• Build in 1947, 4-span structure with total 180.8ft long and 31.7ft wide
• Continuous reinforced concrete (RC) T-girders supported on RC piers 

and seat-type abutments
• Up stream of the bridge, small mountain dominates the terrain; down 

stream, the channel alignment changes with flow intensity towards the 
Pacific Ocean

• In Feb,2000, high flows from a storm caused severe erosion to the 
upstream channel banks and extending to the embankment at Abutment 
1. Some piles at Pier 2 was exposed.

• Then, classified as scour critical
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
• The 100-year flood discharge (Q100) is 170 m3/s estimated from the 

regional flood-frequency equation based on the historical gage data from 
USGS.

• High water elevation level( HWEL) is 2.865 m during 100-year flood.
• The flow depth (y) and velocity (V) in the directly upstream of various 

piers is:

• Select Bent 2 for calculation because of its unstable during 100-year 
flood provided by Caltrans
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Bent No. 2 3 4
y (m) 3.566 2.012 0.152

V (m/s) 2.286 3.048 1.585



SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
• Based on critical velocity (Bent 2)

Where, 
Ks = 0.052 for fine cobbles from the USGS Scientific Investigations Report 

2008-5093;
Ss = ρs/1000 where ρs is the mass density of smart rocks in kg/m3;
g = 9.81 m/s2; 
d = 0.25 m for smart rocks based on the required space for magnet 

embedment; 
Vc = V = 2.286 m/s at Bent 2; 
y = 3.566 m at Bent 2; 
n = 0.041d1/6=0.0325.
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
• Based on riprap size (Abutment 5)

Where, 
D50 = 0.25 m; 
K=1.7 for a rectangle pier; 
V = 1.585 m/s at Bent 4; 
Ss = ρs/1000 in kg/m3; and
g = 9.81 m/s2.
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 Highway 9 over Kings Creek (Bridge No.36-0054)

28
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 Highway 9 over Kings Creek (Bridge No.36-0054)(Cont.)
• 2-span structures in Santa Cruz County over the Kings Creek
• Located at the apex of a bend, main channel flow under span 2
• Classified as scour critical in 2004 and footing pads at Bent 2 were 

exposed
• A 2D hydraulic model of the flow was established by Caltrans to 

determine hydraulic parameter
• The 100-year flood discharge (Q100) is 76.693 m3/s.
• The flow depth (y) and velocity (V) was estimated as 0.3 m/s and 0.18m, 

respectively, at Bent 2.
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
• Based on critical velocity (Bent 2)

Where, 
Ks = 0.052 for fine cobbles from the USGS Scientific Investigations Report 

2008-5093;
Ss = ρs/1000 where ρs is the mass density of smart rocks in kg/m3;
g = 9.81 m/s2; 
d = 0.25 m for smart rocks based on the required space for magnet 

embedment; 
Vc = V = 0.2 m/s at Bent 2; 
y = 0.18 m at Bent 2; 
n = 0.041d1/6=0.0325.
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 US63 Gasconade River Bridge

31

Scour Condition of the Gasconade River Bridge



SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 US63 Gasconade River Bridge(Cont.)
• Located approximately 5.5 miles southeast of Vienna in Maries County, 

MO.
• Built in 1970’s, 12-span concrete-girder Structures.
• Bent 4 is potentially scour critical.
• The 100-year flood discharge(Q100 = 146000 cfs = 4234 m3/s) 

estimated from historical data recorded from USGS gage station at 
Jerome, MO( gage No. 06933500).

• The cross sectional area (A) was estimated to be 36544 ft2 (3395 m2).
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 US63 Gasconade River Bridge(Cont.)
• The average channel velocity, Vaverage = Q100 /A = 1.218 m/s.
• The velocity upstream of bent 4, V=1.7 Vaverage considering pier in the 

main current of flow around a bend. 
• Flow depth at Bent 4 is approximately 40ft (12.192m).
• Therefore, with same size of 0.25m, the density is:  
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 I-44 Roubidoux Creek Bridge (Bridge No.L0039)

34

Schematic view of I-44 Roubidoux Creek Bridge at Bents 5-7



SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 I-44 Roubidoux Creek Bridge (Bridge No.L0039)(Cont.)
• Located about 12 miles south of Crocker in Pulaski County, MO.
• 10-spans with main flow going between Bents 5 and 7
• Bent 6 is potentially scour critical.
• The maximum discharge and flow depth (Qmax = 18200 cfs = 515.4 m3/s

and y=18.70 ft= 5.70 m) recorded at the USGS gage station( USGS 
0698300, Roubidoux Creek above Fort Leonard Wood, MO).

• The cross sectional area (A) was estimated to be 11703 ft2 (1087 m2).
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SMART ROCK DESIGN AND PROTOTYPING

• Motion under Various Flow Conditions(Cont.)
– Incipient Motion at Various Bridge Sites(Cont.)

 I-44 Roubidoux Creek Bridge (Bridge No.L0039)(Cont.)
• The average channel velocity, Vaverage = Qmax /A = 0.474 m/s.
• The velocity upstream of bent 4, V=1.7 Vaverage considering pier in the 

main current of flow around a bend. 
• Therefore, with same size of 0.25m, the density is:  
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SMART ROCK DESIGN AND PROTOTYPING

• Design Guidelines of Smart Rocks 
– Introduction

 Passive smart rocks embedded with permanent magnets, and remotely 
located with one or several magnetometers

 Active smart rocks embedded with electronic device, and located from a 
remote measurement through wireless communication

 Properly designed smart rocks
 Onset movement of riprap slope protection
 Maximum scour depth
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SMART ROCK DESIGN AND PROTOTYPING

• Design Guidelines of Smart Rocks 
– Design Considerations

 Meet two requirements
• Facilitate remote measurement for rock localization
• Ensure automatic movement to the bottom of a scour hole to be 

monitored
 The size of smart rock is constrained by minimum size of permanent 

magnet
 Always stay at the river bed
 Overcome water current and roll down the slope of a scour hole
 Remain at the bottom of the hole
 Density of smart rocks range from that of water and rocks
 Size and density highly depend on critical velocity and depth of water 

flow
 Use and
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SMART ROCK DESIGN AND PROTOTYPING

• Design Guidelines of Smart Rocks 
– Design Procedure

 Step 1: Determine hydraulics parameters near a bridge site
• Flow velocity and water depth directly upstream of piers for 100-year 

flood
• Collected from hydraulic studies by USGS or FEMA
• Estimated from the data recorded by USGS gage station 

 Step 2: Constrain the size and density of a smart tock
• Inversely proportional relation between size and density
• Given density, find out the size
• Given size, find out density (preferred because of the embedded object)

 Step 3:Finalize the design of smart rocks
• Multiply by a design factor(1.2-1.3) to account for any potential errors
• Consider the easy of deployment and fabrication
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SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks
– Size and Density

 Diameter of 0.25m based on standard mold size
 Multiply by 1.2 or 1.3 times to avoid washing away
 Highway 1 Waddell Creek Bridge: 1.2×1278 = 1530 kg/m3

 Highway 9 Kings Creek Bridge: 1.3×1006 = 1308 kg/m3

 US63 Gasconade River Bridge: 1.3×1151 = 1496 kg/m3

 I-44 Roubidoux Creek Bridge: 1.3×1030 = 1339 kg/m3

 The target density of smart rocks: 1530 kg/m3
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SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks (Cont.)
– Internal Configuration (APSS)

 Monitored along the river bank
 Measurement station in South or North pole of the magnet
 Rapid convergence and high accuracy of APSS location
 However, easy affected by ferromagnetic substance
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SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks (Cont.)
– Internal Configuration (APUS)

 Automatically Pointing Upward System (APUS)
 Magnetometer set on the bridge deck, measurement station in south 

pole of the magnet
 Two poles of magnet aligned with vertical sensor of the magnetometer
 Gravity-orientated direction, reduces the degree of freedom, less effect 

by ferromagnetic substance
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SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks (Cont.)
– Design Details

A cylindrical magnet placed in side an organic glass ball(inside ball), an 
outside organic glass ball, liquid filled in between two balls, and a concrete 
shell encasement. Inside ball floating inside the outside ball.
 Diameter Selection

• Magnet: 10 cm in diameter and 5cm in height
• Inside ball: 20 cm based on availability of casting molds, smart rock size 

and floating requirement
• Outside ball: 21 cm based on sufficient spacing for lubrication

 Liquid Selection
• No friction force on the inside ball 
• Nontoxicity requirement
• Density greater than 850 kg/m3

• Therefore, propylene glycol with 1040kg/m3
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SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks (Cont.)
– Effect of Deposit Resetting
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Overall Arrangement of Resetting Tests



SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks (Cont.)
– Effect of Deposit Resetting (Cont.)
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SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks (Cont.)
– Effect of Deposit Resetting (Cont.)
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The intensity variations at different heights for measurement F1 and F2



SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks
– Effect of Steel Reinforcement

 Bubble in the center 10m away from the bridge pier
 Bubble slightly deviated, indicating an inclination angle of less than 

0.5°
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SMART ROCK DESIGN AND PROTOTYPING

• Final Design of Smart Rocks
– Effect of Steel Reinforcement (Cont.)

 Little effect on the localization of the APUS
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The Prototype APUS Placed on a Bridge Foundation



SMART ROCK DESIGN AND PROTOTYPING

• Prototyping with Concrete Encasement
– Spherical concrete encasement
– 25-cm-diameter mold
– Close to the target value of 1530 kg/m3

– Total density is 1520 kg/m3, appropriated for Highway 1 Waddell Creek 
Bridge, Highway 9 Kings Creek Bridge, US-63 Gasconade River Bridge and  
I-44 Roubidoux Creek Bridge
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A Prototype Smart Rock



FUTURE TASKS
• Deployment of Smart Rocks

– US 63 Gasconade  River Bridge
 The exact location of smart rocks (SR1, SR2) around Pier 4 

will be determined when deployed.
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FUTURE TASKS
• Deployment of Smart Rocks (Cont.)

– I-44 Roubidoux Creek Bridge
 The exact location of smart rocks (SR1, SR2) around Pier 7 

will be determined when deployed.
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FUTURE TASKS
• Deployment of Smart Rocks (Cont.)

– Highway 1 Waddell Creek Bridge
 The exact location of smart rocks (SR1, SR2) around Pier 2 

will be determined  when deployed.
 SR3 and SR4 around abutment 1 are deployed to monitor the 

effectiveness of the riprap measure.
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FUTURE TASKS
• Deployment of Smart Rocks (Cont.)

– Highway 9 Kings Creek Bridge
 Main flow goes through between Bent 2 and Abut.3.
 SR1 and SR2 are in the upstream and downstream sides 

of the pier at Bent 2. 
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FUTURE TASKS

• Measurement Plan
– Concept and Practice on Bridge Deck

 Wood Frame with sensor
 X- Longitudinal direction of the bridge  
 Y- Transverse direction of the bridge
 Z- Upward
 Movement in X-, Y-, and Z- directions
 Measurement points distribute above

the smart rocks
 However, wood frame swung under

wind load makes the difficulty to 
get the correct measurements. 
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FUTURE TASKS

• Measurement Plan (Cont.)
– Prototype Light Frame for Rapid Assembling on Site

 Comp.1 – Lower horizontal 
beam for fixing sensor (carbon 
fiber)

 Comp. 2 – Vertical beam 
(carbon fiber)

 Comp. 3 – Higher Horizontal
beam (Aluminum alloy)

 Comp. 4 – Manual forklift
 X-, Y-, and Z- direction

movement by forklift
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FUTURE TASKS

• Measurement Plan (Cont.)
– A 3 Axis Magnetometer

 STL Digital Magnetometer (Type DM050) – Measure X-, Y- and Z-
component of any magnetic field 

 50 meter Coax cable for power and data transmission
 Interface – Coax Ethernet Hub for connection of up to 3 magnetometers
 STL GradMag software installed in a Notebook for full controlling of 

measurement, data acquisition and viewer
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ANY COMMENTS?
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