

System and Process Assessment Research Laboratory

SPAR Lab

Civil, Architectural and Environmental Engineering • 103/104-E Butler-Carlton Hall

SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF BRIDGE SCOUR AND RIPRAP EFFECTIVENESS - GUIDELINES AND VISUALIZATION

Genda Chen, P.E., Ph.D., F.ASCE, F.SEI Professor and Abbett Distinguished Chair in Civil Engineering Director, System and Process Assessment Research Laboratory (SPAR Lab) Associate Director, Mid-America Transportation Center (MATC)

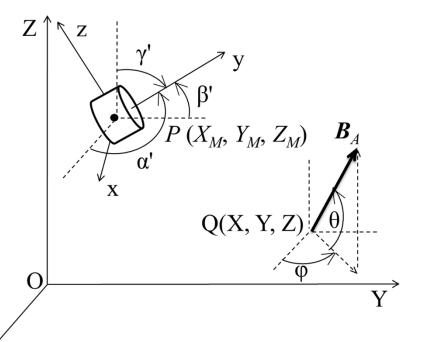
Technical Advisory Council Meeting No.2

OUTLINE OF THIS PRESENTATION

- Localization of Smart Rock
 - Localization Algorithm
 - Experimental Validation at Bridge Site
- Smart Rock Design and Prototyping
 - Motion under Various Flow Conditions
 - Design Guidelines
 - Final Design
 - Prototyping with Concrete Encasement
- Future Tasks
 - Deployment Plan
 - Field Measurement Plan

Localization Algorithm

- The total magnetic field (intensity) of a smart rock with embedded magnet and its surrounding ferromagnetic substances is measured with a magnetometer at various points around the smart rock.
- The ambient magnetic field of the ferromagnetic substances is measured with the magnetometer and an orientation device at the same points.
- The coordinates of the measurement points are surveyed using a survey equipment (Total Station).
- The intensity and coordinate measurements at six or more points enable the localization of the smart rock.


- Localization Algorithm (Cont.)
 - Ambient Field in Global XYZ Coordinate System
 - ✓ Surrounding ferromagnetic substances
 - ✓ B_A = ambient magnetic field vector at a measurement point Q (X,Y,Z)
 - ✓ Three components of B_A :

$$B_{XA} = B_A \cos \theta \cos \varphi$$

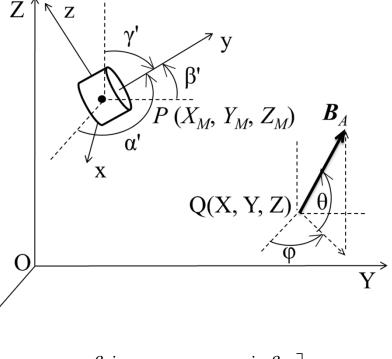
$$B_{YA} = B_A \cos \theta \sin \varphi$$

$$B_{ZA} = B_A \sin \theta$$

 $\checkmark \theta(0,\pi)$ and $\varphi(0,2\pi)$ are measured from a custom-made orientation device

- **Localization Algorithm (Cont.)**
 - Magnetic Field of a Permanent Magnet in XYZ System
 - ✓ Cylindrical magnet $P(X_M, Y_M, Z_M)$
 - ✓ Orientation defined in local xyz coordinate system
 - ✓ Three components of B_M at Point Q:

$$\begin{pmatrix} B_{XM} \\ B_{YM} \\ B_{ZM} \end{pmatrix} = \mathbf{T}^{-1} \begin{pmatrix} k3xy/r^5 \\ k(2y^2 - x^2 - z^2)/r^5 \\ k3zy/r^5 \end{pmatrix}$$


$$r = \sqrt{x^2 + y^2 + z^2}$$

$$x = a_{xX}(X - X_M) + a_{xY}(Y - Y_M) + a_{xZ}(Z - Z_M)$$

$$y = a_{vX}(X - X_M) + a_{vY}(Y - Y_M) + a_{vZ}(Z - Z_M)$$

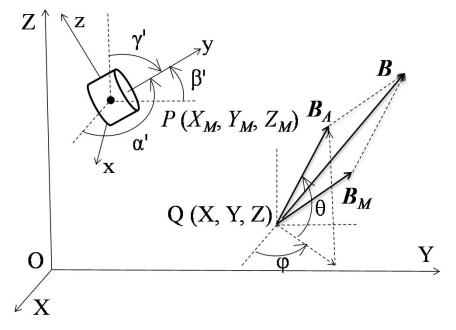
$$z = a_{zX}(X - X_{M}) + a_{zY}(Y - Y_{M}) + a_{zZ}(Z - Z_{M})$$

$$\mathbf{T} = \begin{bmatrix} a_{xX} & a_{xY} & a_{xZ} \\ a_{yX} & a_{yY} & a_{yZ} \\ a_{zX} & a_{zY} & a_{zZ} \end{bmatrix} = \begin{bmatrix} \cos \beta \cos \gamma & \cos \beta \sin \gamma & -\sin \beta \\ \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \cos \beta \\ \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \cos \beta \end{bmatrix}$$

$$\cos \beta \sin \gamma \qquad -\sin \beta$$

$$\gamma \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma \qquad \sin \alpha \cos \beta$$

$$\gamma \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma \qquad \cos \alpha \cos \beta$$



- Localization Algorithm (Cont.)
 - Total Magnetic Field at Point Q in XYZ System
 - ✓ Total magnetic field intensity:

$$B = \sqrt{(B_{XM} + B_{XA})^2 + (B_{YM} + B_{YA})^2 + (B_{ZM} + B_{ZA})^2}$$

- \checkmark B = B(B_A, θ, φ, k, , X, Y, Z, X_M , Y_M , Z_M , α, β, γ) at any measurement point Q (X,Y,Z)
- ✓ Given k, θ , φ , B_A , X, Y, Z, $B = B(X_M, Y_M, Z_M, \alpha, \beta, \gamma)$
- ✓ Minimum measurements at six points

- Localization Algorithm (Cont.)
 - Unknown Orientation
 - ✓ SRSS error between predicted intensity $B_i^{(P)}$ and the measured intensity $B_i^{(M)}$ at n measurement points

$$J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma) = \sqrt{\sum_{i=1}^{n} [B_{i}^{(P)} - B_{i}^{(M)}]^{2}}$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial X_{M}} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial Y_{M}} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \alpha} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \alpha} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \alpha} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \alpha} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \gamma} = 0$$

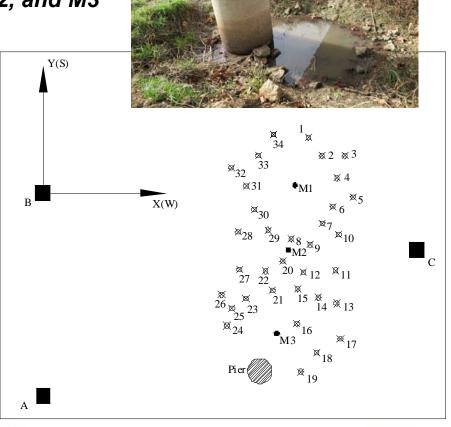
- Known Orientation (α =0, β =0, and γ =0)

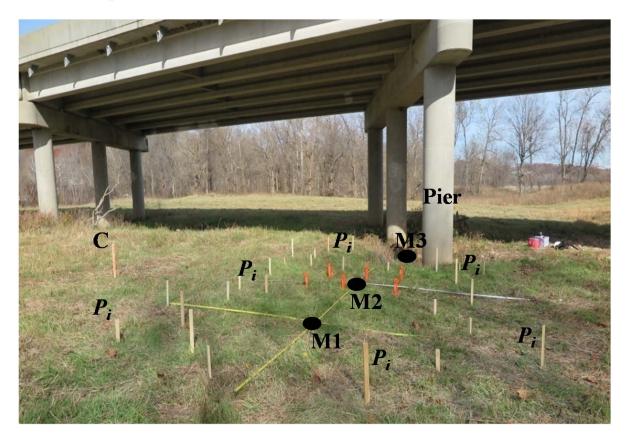
$$J(X_{M}, Y_{M}, Z_{M}) = \sqrt{\sum_{i=1}^{n} [B_{i}^{(P)} - B_{i}^{(M)}]^{2}}$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M})}{\partial Y_{M}} = 0 \qquad \frac{\partial J(X_{M}, Y_{M}, Z_{M})}{\partial Z_{M}} = 0 \qquad \frac{\partial J(X_{M}, Y_{M}, Z_{M})}{\partial X_{M}} = 0$$

- Experimental Validation at Bridge Site
 - Gasconade River Bridge Site, MO
 - Two Smart Rocks
 - ✓ Unknown orientation: Arbitrarily Oriented System (AOS)
 - ✓ Known orientation: Automatically Pointing South System (APSS)

(b) APSS



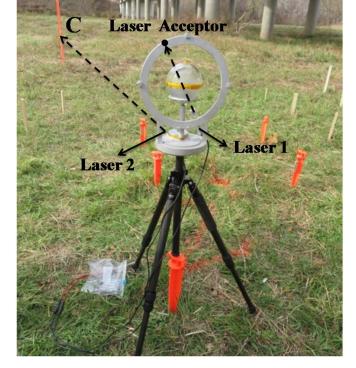

- Experimental Validation at Bridge Site (Cont.)
 - Evaluation of k, B_A , θ and φ
 - \checkmark K(AOS) = 41890.13(nT·m³), measured with high precision level
 - ✓ K(APSS) = 42542.27(nT·m³), measured with low precision level
 - ✓ Ambient magnetic field lines are no longer in parallel due to ferromagnetic substances (e.g. reinforcement in bridge pier and deck)
 - \checkmark Three parameters (B_A , θ and φ) define the ambient magnetic field for each measurement point in space
 - The field intensity B_A was measured with a magnetometer.
 - An Ambient Magnetic Field Orientation Device (AMFOD)
 was developed and prototyped to measure the angles θ and φ.

- Experimental Validation at Bridge Site (Cont.)
 - Test Setup around a Scour Hole
 - √ Three magnet locations M1, M2, and M3
 for AOS and APSS
 - ✓ Total 34 measurement points
 - ✓ Total Station at Point B to survey coordinates of three smart rocks and 34 sensor positions or measurement points
 - ✓ AMFOD was set at the 34 points to measure θ and φ

- Experimental Validation of at Bridge Site (Cont.)
 - Test Setup

- Experimental Validation of at Bridge Site (Cont.)
 - Test Procedure
 - ✓ Step 1: Set the Global XYZ Coordinate System
 - ✓ Step 2: Select the Locations of Smart Rocks and the Sensor Head
 - Smart rocks located far away from, near, and close to the bridge pier
 - 34 points distributed around M1, M2 and M3 bounded by circles with diameter of 1.5 m and 5 m around the pier
 - ✓ Step 3: Select a Calibration Point C for AMFOD
 - Together with a fixed object as a reference to assist in determination of angle φ
 - Set away from the 34 measurement points to ensure the line of sight from laser light to Point C

- Experimental Validation of at Bridge Site (Cont.)
 - Test Procedure (Cont.)
 - ✓ Step 4: Determine the Coordinates of Smart Rocks, Sensor Head and Calibration Point



Total Station and Prism for Positioning

- Experimental Validation of at Bridge Site (Cont.)
 - Test Procedure (Cont.)
 - ✓ Step 5: Measure θ and φ
 - AMFOD placed at measurement point
 - The center of high precision APSS kept along extension line of the orange plastic pole.
 - Shooting light of Horizontal Laser 2 hits on the wooden pole at Point C
 - Inside magnet automatically aligned to the ambient magnetic field
 - Shooting light of Laser 1 goes through the hole at the center line of APSS and hits on the center of laser acceptor
 - Read θ and φ

- Experimental Validation of at Bridge Site (Cont.)
 - Test Procedure (Cont.)
 - ✓ Step 6: Measure the Ambient Magnetic Field Intensity
 - Level bubble attached on the sensor head ensures the sensor perpendicular to the ground
 - Keep the center of the sensor head consistent with that of the high precision APSS by a 57.7 cm wooden pole
 - Conduct measurement without vehicles
 - At least three measurements to ensure accuracy and repeatability

Magnetometer Panel

Sensor Head

- Experimental Validation of at Bridge Site (Cont.)
 - Test Procedure (Cont.)
 - ✓ Step7 & 8: Measure the Total Magnetic Field Intensity of AOS and APSS at M1, M2 and M3

- Experimental Validation at Bridge Site (Cont.)
 - Test Results

Table 1 Sensor Coordinates and Ambient Magnetic Field Intensities

	Sensor Coordinates			Ambient Magnetic Field					
Measurement Point	Schsof Coordinates			Direction			Intensity		
	<i>X</i> /m	<i>Y</i> /m	<i>Z</i> /m	θ / rad	φ / rad	B_A /nT	B_{AX}/nT	B_{AY}/nT	B_{AZ}/nT
С	15.284	-2.264	N/A	N/A	N/A	N/A	N/A	N/A	N/A
P1	10.882	2.202	-0.547	1.213	1.503	50798	1213	17748	47581
P2	11.425	1.481	-0.454	1.222	1.525	51417	810	17567	48316
Р3	12.365	1.479	-0.576	1.222	1.477	51363	1637	17491	48266
P4	12.040	0.587	-0.483	1.197	1.485	51366	1603	18674	47825
P5	12.701	-0.160	-0.512	1.196	1.512	51296	1102	18768	47727
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
P33	8.813	1.487	-0.724	1.143	1.511	51330	1262	21249	46709
P34	9.455	2.322	-0.436	1.162	1.410	51417	3264	20158	47188

- Experimental Validation at Bridge Site (Cont.)
 - Test Results (M1_{APSS})

Location of Sensor Head	X(m)	Y(m)	Z(m)	$B_{i}^{(M)}(nT)$	
P1	10.882	2.202	-0.517	58120	
P2	11.425	1.481	-0.424	56946	
	•••	•••	•••	•••	
P9	10.940	-2.065	-0.687	52055	
P10	12.119	-1.657	-0.665	50942	
P20	9.822	-2.717	-0.665	53002	
P28	7.989	-1.553	-0.659	51464	
P29	9.216	-1.476	-0.661	51031	
P30	8.651	-0.664	-0.757	48911	
	•••	•••	•••	•••	
P34	9.455	2.322	-0.406	56421	
Predicted APSS Location M1 _{APSS}	10.249	0.454	-1.352		
Measured APSS Location M1 _{APSS}	10.326	0.305	-1.407	N/A	
Location Prediction Error for M _{APSS}	-0.077	0.149	0.055		
SRSS Error in Coordinate		0.1	76 m		

- Experimental Validation at Bridge Site (Cont.)
 - Test Results (M3_{APSS})

Location of Sensor Head	X(m)	Y(m)	Z(m)	$B_{i}^{(M)}(nT)$
Р9	10.940	-2.065	-0.657	52766
P11	11.991	-3.082	-0.558	52422
P12	10.670	-3.162	-0.670	55203
	•••	•••	•••	•••
P20	9.822	-2.717	-0.635	55164
P21	9.413	-3.877	-0.748	63734
P23	8.313	-4.215	-0.501	59204
P25	7.750	-4.591	-0.858	58350
P26	7.315	-4.055	-0.726	56087
P27	8.043	-3.046	-0.553	55198
Predicted APSS Location M3 _{APSS}	9.527	-5.520	-1.850	
Measured APSS Location M3 _{APSS}	9.576	-5.584	-1.822	N/A
Location Prediction Error for M3 _{APSS}	-0.049	0.064	-0.028	
SRSS Error in Coordinate		0.0851	n	

- Experimental Validation at Bridge Site (Cont.)
 - Test Results (M1_{AOS})

Location of Sensor Head	X(m)	Y(m)	Z(m)	$B_{i}^{(M)}(nT)$
P1	10.882	2.202	-0.517	53558
P2	11.425	1.481	-0.424	52767
•••	•••	•••	•••	•••
P9	10.940	-2.065	-0.687	49665
P10	12.119	-1.657	-0.665	49567
P20	9.822	-2.717	-0.665	51538
P28	7.989	-1.553	-0.659	50607
P29	9.216	-1.476	-0.661	48149
P30	8.651	-0.664	-0.757	47696
•••	•••	•••	•••	•••
P34	9.455	2.322	-0.406	54539
Predicted AOS Location M1 _{AOS}	10.265	0.235	-1.456	
Measured AOS Location M1 _{AOS}	10.326	0.305	-1.422	N/A
Location Prediction Error for M1 _{AOS}	-0.061	-0.070	-0.034	
SRSS Error in Coordinate		0.0	99 m	

- Experimental Validation at Bridge Site (Cont.)
 - Test Results (M3_{AOS})

Location of Sensor Head	X(m)	Y(m)	Z(m)	$B_{i}^{(M)}(nT)$
P9	10.940	-2.065	-0.667	52651
P12	10.670	-3.162	-0.680	54660
P13	12.031	-4.399	-0.745	52095
•••	• • •	•••	•••	•••
P20	9.822	-2.717	-0.645	54929
P21	9.413	-3.877	-0.758	62508
P23	8.313	-4.215	-0.511	59364
P25	7.750	-4.591	-0.868	59523
P26	7.315	-4.055	-0.736	56642
P27	8.043	-3.046	-0.563	55399
Predicted AOS Location M3 _{AOS}	9.514	-5.519	-1.860	
Measured AOS Location M3 _{AOS}	9.576	-5.584	-1.837	N/A
Location Prediction Error for M3 _{AOS}	-0.062	0.065	-0.023	
SRSS Error in Coordinate	0.093m			

- Motion under Various Flow Conditions
 - Criteria of Incipient Motion of Rocks
 - ✓ Critical velocity (HEC 18, 3rd version)

$$V_c = \frac{K_s^{1/2} (S_s - 1)^{1/2} d^{1/2} y^{1/6}}{n}$$

✓ Critical shear stress(HEC18, 3rd version)

$$\tau_c = K_s(\rho_s - \rho_w) gd$$

$$\tau_{local} = \left(\frac{nV_{local}}{K_u}\right)^2 \frac{\gamma_w}{y^{1/3}}$$

√ Riprap size design(HEC 23)

$$D_{50} = \frac{0.692(KV)^2}{2g(S_s - 1)}$$

- Motion under Various Flow Conditions (Cont.)
 - Incipient Motion at Various Bridge Sites
 - ✓ Highway 1 over Waddell Creek (Br. No. 36-0065)

Highway No.1 Waddell Creek Bridge

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
 - Located about 17miles north of the city of Santa Cruz
 - Build in 1947, 4-span structure with total 180.8ft long and 31.7ft wide
 - Continuous reinforced concrete (RC) T-girders supported on RC piers and seat-type abutments
 - Up stream of the bridge, small mountain dominates the terrain; down stream, the channel alignment changes with flow intensity towards the Pacific Ocean
 - In Feb,2000, high flows from a storm caused severe erosion to the upstream channel banks and extending to the embankment at Abutment 1. Some piles at Pier 2 was exposed.
 - Then, classified as scour critical

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
 - The 100-year flood discharge (Q100) is 170 m³/s estimated from the regional flood-frequency equation based on the historical gage data from USGS.
 - High water elevation level(HWEL) is 2.865 m during 100-year flood.
 - The flow depth (y) and velocity (V) in the directly upstream of various piers is:

Bent No.	2	3	4
y (m)	3.566	2.012	0.152
V (m/s)	2.286	3.048	1.585

 Select Bent 2 for calculation because of its unstable during 100-year flood provided by Caltrans

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
 - Based on critical velocity (Bent 2)

$$2.286 = \frac{0.052^{1/2} \left(\frac{\rho_s}{1000} - 1\right)^{1/2} 0.25^{1/2} 3.566^{1/6}}{0.0325}, \quad \rho_s = 1278 kg / m^3$$

Where,

 K_s = 0.052 for fine cobbles from the USGS Scientific Investigations Report 2008-5093;

 $S_s = \rho_s/1000$ where ρ_s is the mass density of smart rocks in kg/m³;

 $g = 9.81 \text{ m/s}^2$;

d = 0.25 m for smart rocks based on the required space for magnet embedment;

 $V_c = V = 2.286 \text{ m/s}$ at Bent 2;

y = 3.566 m at Bent 2;

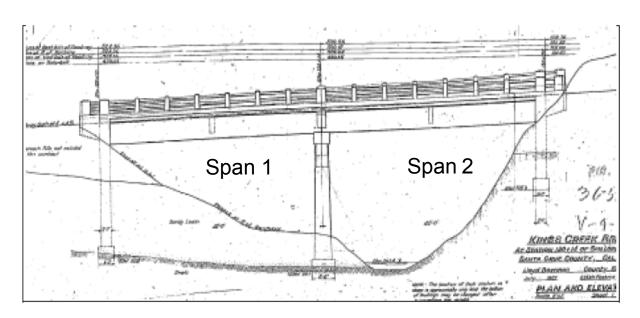
 $n = 0.041d^{1/6} = 0.0325.$

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
 - Based on riprap size (Abutment 5)

$$0.25 = \frac{0.692(1.7 \times 1.585)^2}{2 \times 9.81 \left(\frac{\rho_s}{1000} - 1\right)}, \qquad \rho_s = 2024 kg / m^3$$

Where,

 $D_{50} = 0.25 m;$


K=1.7 for a rectangle pier;

V = 1.585 m/s at Bent 4;

 $S_s = \rho_s/1000$ in kg/m³; and

 $g = 9.81 \text{ m/s}^2$.

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ Highway 9 over Kings Creek (Bridge No.36-0054)

Schematic view of Kings Creek Bridge No.36-0054

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ Highway 9 over Kings Creek (Bridge No.36-0054)(Cont.)
 - 2-span structures in Santa Cruz County over the Kings Creek
 - Located at the apex of a bend, main channel flow under span 2
 - Classified as scour critical in 2004 and footing pads at Bent 2 were exposed
 - A 2D hydraulic model of the flow was established by Caltrans to determine hydraulic parameter
 - The 100-year flood discharge (Q100) is 76.693 m³/s.
 - The flow depth (y) and velocity (V) was estimated as 0.3 m/s and 0.18m, respectively, at Bent 2.

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ Highway 1 over Waddell Creek (Br. No. 36-0065)(Cont.)
 - Based on critical velocity (Bent 2)

$$0.2 = \frac{0.052^{1/2} \left(\frac{\rho_s}{1000} - 1\right)^{1/2} 0.25^{1/2} 0.18^{1/6}}{0.0325}, \quad \rho_s = 1006 \, kg \, / \, m^3$$

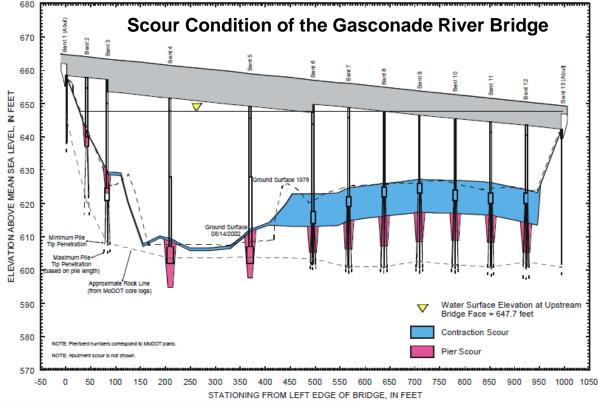
Where,

 K_s = 0.052 for fine cobbles from the USGS Scientific Investigations Report 2008-5093;

 $S_s = \rho_s/1000$ where ρ_s is the mass density of smart rocks in kg/m³;

 $g = 9.81 \text{ m/s}^2$;

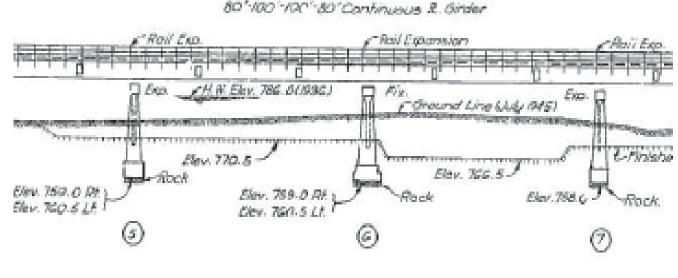
d = 0.25 m for smart rocks based on the required space for magnet embedment;


 $V_c = V = 0.2 \text{ m/s at Bent 2};$

y = 0.18 m at Bent 2;

 $n = 0.041d^{1/6} = 0.0325$.

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ US63 Gasconade River Bridge



- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - √ US63 Gasconade River Bridge(Cont.)
 - Located approximately 5.5 miles southeast of Vienna in Maries County,
 MO.
 - Built in 1970's, 12-span concrete-girder Structures.
 - Bent 4 is potentially scour critical.
 - The 100-year flood discharge(Q100 = 146000 cfs = 4234 m³/s)
 estimated from historical data recorded from USGS gage station at
 Jerome, MO(gage No. 06933500).
 - The cross sectional area (A) was estimated to be 36544 ft² (3395 m²).

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ US63 Gasconade River Bridge(Cont.)
 - The average channel velocity, $V_{average} = Q_{100} / A = 1.218 \text{ m/s}.$
 - The velocity upstream of bent 4, $V=1.7\ V_{average}$ considering pier in the main current of flow around a bend.
 - Flow depth at Bent 4 is approximately 40ft (12.192m).
 - Therefore, with same size of 0.25m, the density is:

$$1.218 \times 1.7 = \frac{0.052^{1/2} \left(\frac{\rho_s}{1000} - 1\right)^{1/2} 0.25^{1/2} 12.192^{1/6}}{0.0325}, \quad \rho_s = 1151 kg / m^3$$

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ I-44 Roubidoux Creek Bridge (Bridge No.L0039)

GENERAL ELEVATION

Schematic view of I-44 Roubidoux Creek Bridge at Bents 5-7

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ I-44 Roubidoux Creek Bridge (Bridge No.L0039)(Cont.)
 - Located about 12 miles south of Crocker in Pulaski County, MO.
 - 10-spans with main flow going between Bents 5 and 7
 - Bent 6 is potentially scour critical.
 - The maximum discharge and flow depth (Q_{max} = 18200 cfs = 515.4 m³/s and y=18.70 ft= 5.70 m) recorded at the USGS gage station (USGS 0698300, Roubidoux Creek above Fort Leonard Wood, MO).
 - The cross sectional area (A) was estimated to be 11703 ft² (1087 m²).

- Motion under Various Flow Conditions(Cont.)
 - Incipient Motion at Various Bridge Sites(Cont.)
 - ✓ I-44 Roubidoux Creek Bridge (Bridge No.L0039)(Cont.)
 - The average channel velocity, $V_{average} = Q_{max}/A = 0.474$ m/s.
 - The velocity upstream of bent 4, $V=1.7\ V_{average}$ considering pier in the main current of flow around a bend.
 - Therefore, with same size of 0.25m, the density is:

$$0.474 \times 1.7 = \frac{0.052^{1/2} \left(\frac{\rho_s}{1000} - 1\right)^{1/2} 0.25^{1/2} 5.70^{1/6}}{0.0325}, \quad \rho_s = 1030 \, kg \, / \, m^3$$

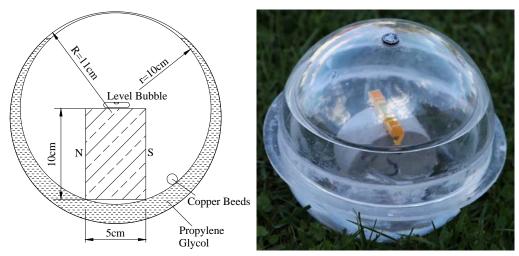
Design Guidelines of Smart Rocks

- Introduction
 - ✓ Passive smart rocks embedded with permanent magnets, and remotely located with one or several magnetometers
 - ✓ Active smart rocks embedded with electronic device, and located from a remote measurement through wireless communication
 - √ Properly designed smart rocks
 - ✓ Onset movement of riprap slope protection
 - √ Maximum scour depth

Design Guidelines of Smart Rocks

- Design Considerations
 - ✓ Meet two requirements
 - Facilitate remote measurement for rock localization
 - Ensure automatic movement to the bottom of a scour hole to be monitored
 - √ The size of smart rock is constrained by minimum size of permanent magnet
 - ✓ Always stay at the river bed
 - ✓ Overcome water current and roll down the slope of a scour hole
 - ✓ Remain at the bottom of the hole
 - ✓ Density of smart rocks range from that of water and rocks
 - ✓ Size and density highly depend on critical velocity and depth of water flow

✓ Use
$$d = \frac{(nV_c)^2}{K_s y^{1/3} (S_s - 1)}$$
 and $D_{50} = \frac{0.692(KV)^2}{2g(S_s - 1)}$


Design Guidelines of Smart Rocks

- Design Procedure
 - ✓ Step 1: Determine hydraulics parameters near a bridge site
 - Flow velocity and water depth directly upstream of piers for 100-year flood
 - Collected from hydraulic studies by USGS or FEMA
 - Estimated from the data recorded by USGS gage station
 - ✓ Step 2: Constrain the size and density of a smart tock
 - Inversely proportional relation between size and density
 - Given density, find out the size
 - Given size, find out density (preferred because of the embedded object)
 - ✓ Step 3:Finalize the design of smart rocks
 - Multiply by a design factor(1.2-1.3) to account for any potential errors
 - Consider the easy of deployment and fabrication

Final Design of Smart Rocks

- Size and Density
 - ✓ Diameter of 0.25m based on standard mold size
 - ✓ Multiply by 1.2 or 1.3 times to avoid washing away
 - ✓ Highway 1 Waddell Creek Bridge: 1.2×1278 = 1530 kg/m³
 - ✓ Highway 9 Kings Creek Bridge: 1.3×1006 = 1308 kg/m³
 - ✓ US63 Gasconade River Bridge: 1.3×1151 = 1496 kg/m³
 - ✓ *I-44 Roubidoux Creek Bridge:* 1.3×1030 = 1339 kg/m³
 - ✓ The target density of smart rocks: 1530 kg/m³

- Final Design of Smart Rocks (Cont.)
 - Internal Configuration (APSS)
 - √ Monitored along the river bank
 - ✓ Measurement station in South or North pole of the magnet
 - √ Rapid convergence and high accuracy of APSS location
 - √ However, easy affected by ferromagnetic substance

APSS Model of Smart Rocks

- Final Design of Smart Rocks (Cont.)
 - Internal Configuration (APUS)
 - ✓ Automatically Pointing Upward System (APUS)
 - ✓ Magnetometer set on the bridge deck, measurement station in south pole of the magnet
 - √ Two poles of magnet aligned with vertical sensor of the magnetometer
 - ✓ Gravity-orientated direction, reduces the degree of freedom, less effect by ferromagnetic substance

(a) Schematic View (b) Prototype Smart Rock (c) Balanced Magnet APUS Model of Smart Rocks

Final Design of Smart Rocks (Cont.)

Design Details

A cylindrical magnet placed in side an organic glass ball(inside ball), an outside organic glass ball, liquid filled in between two balls, and a concrete shell encasement. Inside ball floating inside the outside ball.

✓ Diameter Selection

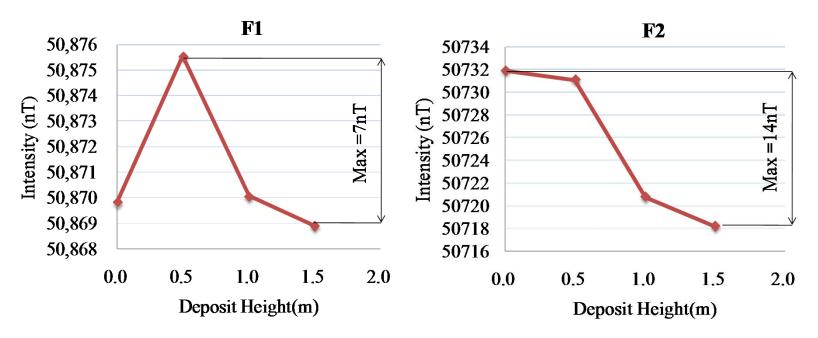
- Magnet: 10 cm in diameter and 5cm in height
- Inside ball: 20 cm based on availability of casting molds, smart rock size and floating requirement
- Outside ball: 21 cm based on sufficient spacing for lubrication

√ Liquid Selection

- No friction force on the inside ball
- Nontoxicity requirement
- Density greater than 850 kg/m³
- Therefore, propylene glycol with 1040kg/m³

- Final Design of Smart Rocks (Cont.)
 - Effect of Deposit Resetting

Overall Arrangement of Resetting Tests



- Final Design of Smart Rocks (Cont.)
 - Effect of Deposit Resetting (Cont.)

- Final Design of Smart Rocks (Cont.)
 - Effect of Deposit Resetting (Cont.)

The intensity variations at different heights for measurement F1 and F2

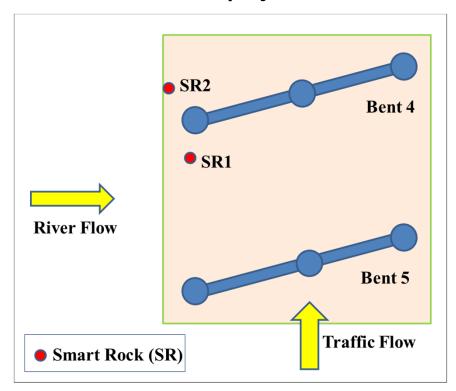
- Final Design of Smart Rocks
 - Effect of Steel Reinforcement
 - ✓ Bubble in the center 10m away from the bridge pier
 - ✓ Bubble slightly deviated, indicating an inclination angle of less than 0.5 °

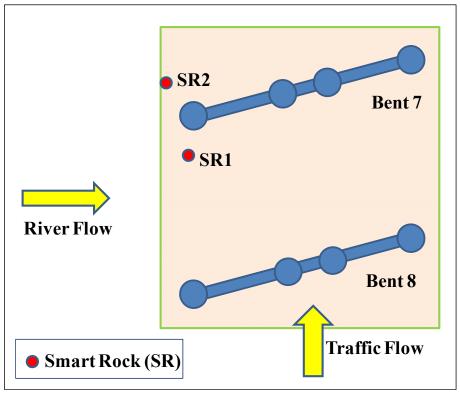
The Prototype APUS Placed next to a Bridge Pier

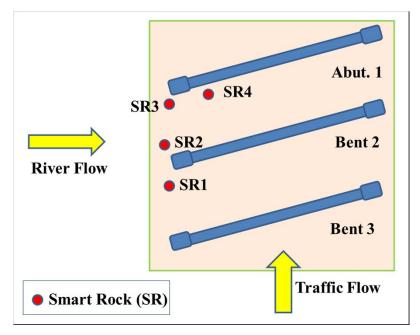
- Final Design of Smart Rocks
 - Effect of Steel Reinforcement (Cont.)
 - ✓ Little effect on the localization of the APUS

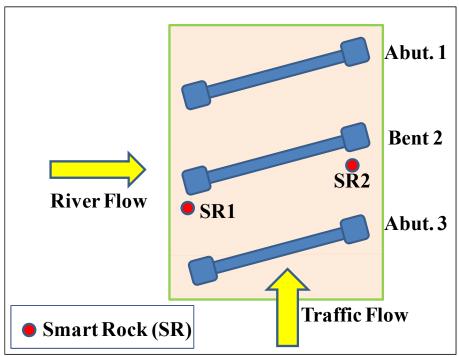
The Prototype APUS Placed on a Bridge Foundation

Prototyping with Concrete Encasement


- Spherical concrete encasement
- 25-cm-diameter mold
- Close to the target value of 1530 kg/m³
- Total density is 1520 kg/m³, appropriated for Highway 1 Waddell Creek Bridge, Highway 9 Kings Creek Bridge, US-63 Gasconade River Bridge and I-44 Roubidoux Creek Bridge

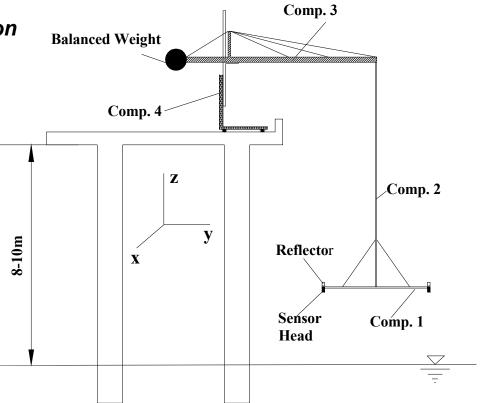

A Prototype Smart Rock


- Deployment of Smart Rocks
 - US 63 Gasconade River Bridge
 - √ The exact location of smart rocks (SR1, SR2) around Pier 4
 will be determined when deployed.


- Deployment of Smart Rocks (Cont.)
 - I-44 Roubidoux Creek Bridge
 - ✓ The exact location of smart rocks (SR1, SR2) around Pier 7 will be determined when deployed.

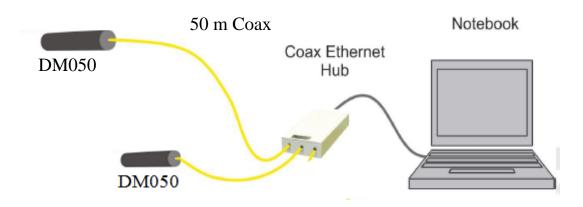
- Deployment of Smart Rocks (Cont.)
 - Highway 1 Waddell Creek Bridge
 - √ The exact location of smart rocks (SR1, SR2) around Pier 2
 will be determined when deployed.
 - ✓ SR3 and SR4 around abutment 1 are deployed to monitor the effectiveness of the riprap measure.

- Deployment of Smart Rocks (Cont.)
 - Highway 9 Kings Creek Bridge
 - ✓ Main flow goes through between Bent 2 and Abut.3.
 - ✓ SR1 and SR2 are in the upstream and downstream sides of the pier at Bent 2.



Measurement Plan

- Concept and Practice on Bridge Deck
 - √ Wood Frame with sensor
 - ✓ X- Longitudinal direction of the bridge
 - √ Y- Transverse direction of the bridge
 - ✓ Z- Upward
 - ✓ Movement in X-, Y-, and Z- directions
 - ✓ Measurement points distribute above the smart rocks
 - ✓ However, wood frame swung under wind load makes the difficulty to get the correct measurements.


- Measurement Plan (Cont.)
 - Prototype Light Frame for Rapid Assembling on Site
 - ✓ Comp.1 Lower horizontal beam for fixing sensor (carbon fiber)
 - ✓ Comp. 2 Vertical beam (carbon fiber)
 - ✓ Comp. 3 Higher Horizontal beam (Aluminum alloy)
 - ✓ Comp. 4 Manual forklift
 - √ X-, Y-, and Z- direction
 movement by forklift

Measurement Plan (Cont.)

- A 3 Axis Magnetometer
 - ✓ STL Digital Magnetometer (Type DM050) Measure X-, Y- and Zcomponent of any magnetic field
 - √ 50 meter Coax cable for power and data transmission
 - ✓ Interface Coax Ethernet Hub for connection of up to 3 magnetometers
 - ✓ STL GradMag software installed in a Notebook for full controlling of measurement, data acquisition and viewer

ANY COMMENTS?

